2楼seaheroli
(......)
发表于 2012-5-27 21:01
只看此人
1、所有的等腰三角形
三角形AC'C、DBC'、DB'A、ABC、AB'C'均为等腰。
理由:AC=AC'推出AC'C为等腰三角形
∠B和B'相等,平行然后∠B=∠B'AB,∠B'=∠B'C'B,推出DBC'、DB'A均为等腰三角形。
∠B'AC'=AC'C,∠B'C'A=∠C,而∠C=∠AC'C,所以三角形AB'C'以及原来的ABC都是等腰三角形。
2、∠B=∠B'AB,然后三角形AB'C'为等腰,所以5倍的∠B=180度,∠B=36度
3、根据前面的等腰三角形可知∠ADC'=2倍∠B'=2倍∠B=2∠CAC'=2X,
∠AC'D=(180-X)/2,∠AC'D>∠ADC'即(180-X)/2 > 2X,解得X<36度。
运用自己以前学的知识,不知道是不是切合现在的教学进度,希望可以帮到LZ。
[ 本帖最后由 seaheroli 于 2012-5-27 21:04 编辑 ].