发新话题
打印【有0个人次参与评价】

[数学] 有位家长在短信里面问的问题

有位家长在短信里面问的问题

引用:
不好意思,猫老师,由于我们之前没有学过奥数,所以这次讲到排列与组合的题目就不太会,想请教一下:将10个人任意分成甲、乙两组,每组至少1人,有多少分法?
不要排列组合
用乘法原理。
第一个人可能在甲组,也可能在乙组。所以有两种可能。
第二个人可能在甲组,也可能在乙组。所以有两种可能。
.....
第十个人可能在甲组,也可能在乙组。所以有两种可能。
因此一共有2*2*...*2=1024种
但是要扣掉全在甲组和全在乙组两种,所以实际上是1022种。.

TOP

奇思妙想!出神入化!.

TOP

上述方法应该是重复较多了。
C(10,1)+C(10,2)+C(10,3)+C(10,4)+C(10,5)=637
6/7/8/9和选1/2/3/4重复。
有意思的是:C(10,6)+C(10,7)+C(10,8)+C(10,9)=385, 385+637=1022,上述做法刚好重复了385个。.

TOP

甲组和乙组是不一样的。.

TOP

回复 3#ITmeansit 的帖子

还是同意猫老师的意见,你的答案是从人数上来说,猫老师的是从“人”来说的,不同的人在不同的组,分组确实不一样了啊!.

TOP

谢谢猫老师的解答,太清楚了。.

TOP

回复 4#echooooo 的帖子

如果“甲”和“乙”算是两个不同的组的话,那么自然是C10,1+C10,2+C10,3+...+C10,9=1022,传统的做法,传统的答案;但猫老师另辟蹊径,换了一种思路,解法是更为简洁。
但如果“甲”、“乙”只是表明分成“两组”,互相之间没有不同,则应该是ITmeansit说的C10,1+C10,2+...C10,5=637。.

TOP

猫老师再请教一个问题:有长分别为1、2、3、4、5、6、7、8、9的线段各一条,从中选出三条来组成三角形,不同的选法有多少种?.

TOP

引用:
原帖由 yanyan2002913 于 2008-11-11 12:50 发表 \"\"
猫老师再请教一个问题:有长分别为1、2、3、4、5、6、7、8、9的线段各一条,从中选出三条来组成三角形,不同的选法有多少种?
穷举法。.

TOP

不好意思,穷举法不懂,先根据三角形的两边之和大于第三条边这条定理然后再怎么样就不知道了.

TOP

如果最长边为9,那么其他两条边加起来要大于9。
可能是2,8;3,8;3,7;....

一次类推,一个写下去就好了。.

TOP

理解了,谢谢猫老师.

TOP

继续请教猫老师:将一个圆形的纸片用直线划分成若干张小纸片,若要分成不少于100张小纸片,至少要画多少条直线?.

TOP

猫老师不要打我哦.

TOP

引用:
原帖由 greenjyz 于 2008-11-11 11:13 发表 \"\"
如果“甲”和“乙”算是两个不同的组的话,那么自然是C10,1+C10,2+C10,3+...+C10,9=1022,传统的做法,传统的答案;但猫老师另辟蹊径,换了一种思路,解法是更为简洁。
但如果“甲”、“乙”只是表明分成“两组”, ...
事实上,如果只要分成2组,答案应该是
C(10,1)+C(10,2)+C(10,3)+C(10,4)+C(10,5)/2=511.

TOP

啊。。。是的,正好是1022的一半。.

TOP

回复 13#yanyan2002913 的帖子

1+1+2+3+4+5+……+n大于等于100,求出n的最小值就可以了 对吗?.

TOP

回复 13#yanyan2002913 的帖子

问得蛮错卡的,.

TOP

引用:
原帖由 yanyan2002913 于 2008-11-11 14:31 发表 \"\"
继续请教猫老师:将一个圆形的纸片用直线划分成若干张小纸片,若要分成不少于100张小纸片,至少要画多少条直线?
http://ww123.net/baby/viewthread ... 3D1%26cycleid%3D326.

TOP

谢谢这么多热心、优秀的家长,更谢谢猫老师的热心。.

TOP

发新话题