请教数学题(质数与合数)
P>3为质数,求证(P^2-1)能被24整除.
分析:因为24=2^3*3,而2^3(2*2*2)和3是互质的,所以只需要证明2^3(2*2*2)和3能整除(P^2-1)即可。
因为P>3,又是质数,所以P是奇数,并且又不能被2或者3整除,可以把整数分成6K,6K+1,6K+2,6K+3,6K+4,6K+5,这六类,由于6K、6K+2,6K+4是2的倍数,6K+3是3的倍数,所以P只能具有6K+1或6K+5的形式。方便起见,也常把6K+5写成6K-1(它们除以6余数均为5)
P^2-1=(6K±1)^2-1=36K^2±12K=12K(3K±1)
由于K(3K±1)为一奇一偶,所以2│K(3K±1),于是便有24│(P^2-1).