249 12345
发新话题
打印【有166个人次参与评价】

[数学] 华育数学吧-----备考一模,创造辉煌

华育数学吧-----备考一模,创造辉煌

距离中考不足100天,初三学生为了中考要开始紧张地复习应考。怎样迎接中考?怎样考好数学呢?
      
     我们认为了解数学的“语言”和“灵魂”很有必要,因为只有在宏观上了解了数学,才能使考生掌握学习数学的方法,提高学习效率。如果我们具备了这些学习数学的动机、思想、方法和精髓,就一定能学好数学,在中考时考出好成绩。
  数学的外在表现是数学语言  
    数学研究的对象是形式化了的思想材料,它是通过数学语言表现出来的,数学语言是通用、精确、简约的科学语言。要学好数学首先要学好数学语言,要把数学教育当作一种语言教育来研究。数学语言的精确性和简约性是通过数学进行思想品德教育的重要方面。因此,在学习数学时要遵循如下的原则:
  1、现实材料模型化。数学内容实际上是数学模型,数学教学是数学模型的教学。要遵循现实背景与形式模型互相统一的原则。
  2、解题过程的技巧性和程式化。解题技巧与程序训练相结合。好的数学老师和掌握学习数学方法的学生会善于提出问题,善于启发思考,善于归纳猜想,善于演绎推理,善于化难为易,使人茅塞顿开。
  3、简约的数学语言表达丰富的数学思想。要采取符合学生年龄特点与数学语言表达相适应的原则。
  数学的“灵魂”是数学思想方法
  数学思想、数学方法是数学智能发展的重要成分,是数学教育领域中要研究的一个重要课题。但目前这一问题还没有引起数学教师足够的重视。其原因有:(1)目前的数学教材仅是知识的呈现,对蕴含在知识中的数学思想、数学方法没有予以概括与提炼;(2)对数学思想、数学方法的内涵与外延不十分清楚,于是在教学中常常不能恰如其分地进行数学思想、方法的教学,致使一些学生教师讲过的习题会做,教师没有讲过的习题不会做;套题会做,质同形不同的题不会做;模仿的题目会做,独立思考的题目不会做。
  数学思想是对数学规律的理性认识,具有本质性、概括性和指导性的意义,可谓数学“灵魂”。数学方法是获取数学知识的途径、手段和方式的总和,没有数学方法就不可能有获取数学知识的正确行为。
  因此,我们要研究(1)数学思想、数学方法的内涵与外延的含意;(2)中学数学应进行哪些数学思想、数学方法的教学;(3)数学思想、方法与学生智能发展的关系;(4)如何在数学教学中渗透数学思想方法。
  数学的价值在于应用  
       数学来源于实践,又高于实践,服务于实践。因此,我们学习数学的目的,就是为解决实际问题,不管是运用已有数学知识去解决实际问题,还是从社会实践去发现新的数学研究课题,去创造性地研究和发展数学科学,化实际问题为数学模型都起着极其重要的作用。我们经常看到有些学生遇到一个实际问题束手无策无处下手,当把这个问题化成数学模型,用数学语言加以表述之后,他马上就会解了,这其中一个关键的问题是如何化实际问题为数学模型。
  化实际问题为数学模型,没有通则可循,主要是具体问题具体分析,善于从问题中去发现数量之间、数形之间的关系,从中找到规律,灵活运用数学知识加以解决。特别要注意以下几点:
    1、要善于把普通语言化为数学语言。数学语言就是由“记号”和“符号”组成的语言,全世界都通用。数学语言有它自己的特点和规律,是用数学的“记号”和“符号”从“数”与“形”的方面去刻画事物,揭示事物的本质,它具有准确性、严密性和逻辑性的品质。因此,把普通语言化为数学语言就要着力体现这些品质。
  2、要善于在普通语言中寻找数量关系,找出哪些是已知量,哪些是未知量,哪些是直接未知量,哪些是间接未知量,用数学语言把这些数量关系表示出来。
  3、要善于通过普通语言理解它的位置关系和形态外貌,画出能反映其本质的图形,从“形”的方面用数学语言加以表达。
  4、要掌握一些基本类型的数学应用题。如列方程解应用题,列函数式解应用题;最值问题的一些应用题,几何问题的应用题,三角问题的应用题以及其他方面的典型应用题,以增强建模能力。
  数学理论它具有准确性、严密性、逻辑性和抽象性的品格,这种属性只能从表面上掩盖数学起源于外部世界的事实,而不应该成为应用数学理论解决实际问题的障碍。因此,化实际问题为数学模型,一方面要深入分析实际问题中的空间形式和各种数量关系,善于将这些空间形式和数量关系用数学语言表示出来。另一方面在学习数学理论的过程中,要仔细体会和寻求这些理论对解决实际问题的指导作用,努力把它应用于现实世界,以解决人们迫切需要解决的实际问题。
  培养数学素质
  数学素质教育的提出,与当前国际数学教育改革的理论是相适应的。一个人的数学素质,是指在先天的基础上,主要通过后天的学习所获得的数学观念、知识和能力的总称,是在后天的环境与数学教育影响下形成发展的一种稳定的心理属性。
  数学素质应该从知识观念、创造能力、思维品质、科学语言等四个层面进行分析。应包括良好的量化意识和数感,创造型的数学能力及自信的意志品格,良好的思维品质与合理的思维习惯,以及能运用简约、准确的数学语言进行交流。即应包括数学意识、问题解决、逻辑推理和信息交流四个部分,不可有所偏颇。培养和掌握数学的四大能力为基本运算能力、抽象思维能力、空间想像能力和建立数学模型的能力。

[ 本帖最后由 艾丰 于 2013-1-9 12:50 编辑 ].

TOP

审题是中考数学取胜的关键

    考生在数学上失分的主要原因有三大方面:运算、操作和理解,其中由于理解上的失误造成失分的现象较多。那么怎么才能避免审题失误呢?
  一、审题时注意力要高度集中,思维直接指向试题,一定要眼到、手到、心到。尽管是中考这种关键时刻,也并不是所有的考生都能把注意力集中到试卷上,尤其是一些心理素质欠佳的考生。
  在规定时间内高度集中注意力,这是考试基本功之一。这种基本功的训练在于平时。同学们自己在做练习时,包括做回家作业,不妨试试限时完成法,即规定自己在一定的时间内,集中注意力完成练习。不要有停顿,不要喝水,不要说话。
  二、审题时可以采用以下几个步骤:1、第一遍粗读题,使自己大致了解题目的意思。2、第二遍精读题,要逐字逐句地读,仔细理解题目中各个条件的含义。读的过程中不妨用笔把题目中的重要条件,重要语句划下来,圈出来,以提醒自己,引起重视。3、第三遍重读题。作完一道习题后应回过头来重新审题,看看哪些数据、关系还没有用上,已用上的用得是否准确;关键词句的理解是否准确、到位;结果是否符合题意,符合生活经验。
  三、要学会翻译数学题。别以为只有语言需要翻译,数学同样也需要翻译,就是把大家觉得特别长的题翻译成自己能够理解的简单的语言,把文字性的东西翻译成数学语言,进一步用代数式或者是符号语言来表达,有助于审题。
  四、审题时要克服思维定势的影响。考试之前,考生做了大量的题目,考试不可避免地会在某些地方令考生有似曾相识的感觉,这原本是件好事,但考生的思维定式把这变成了一件坏事。有的考生看题还没过半,发现类似的题目老师讲解过,立即兴奋地动笔,有的同学甚至靠记忆老师讲过的解法来依葫芦画瓢,谁知道试题的其他条件、需要求证的结果已经做过变化,错解是必然结果。
 总之,请同学们牢记:审清题意是致胜的前提。粗心就等于把成功推向你的竞争对手。因此一定要细之又细,慎之又慎,滴“分”不漏。

[ 本帖最后由 艾丰 于 2012-3-21 20:30 编辑 ].

TOP

中考数学复习注重解题方法


        数学学习有自身的规律,许多数学问题的解决方法也是有规律可寻的。作为学业考试,主要考查学生对初中数学中的一些基本概念、基本方法的掌握,也即主要考查一些数学的通性通法,因此平时切忌不动脑筋,靠“多”做题目,达到掌握的目的。多做题目固然有好处,可以做到见多识广,但由于学生学习的时间是个有限的常数,而且在这有限的时间内还要学习其他许多知识,因此单靠盲目地多做练习,达到熟能生巧的程度,看来这条路是行不通的,我们要考虑的是如何提高学习的效率,为此我们一定要注意经常整理解决常见问题的基本方法。比如对于几何的证明题,我们要学会用分析的方法来思考问题:

已知,AD是△ABC的角平分线,BD是BE与BA的比例中项,求证:AD是AE与AC的比例中项。

  分析:根据已知条件可以知道,BD2=BE·BA,进一步可以证得△BDE∽△BAD,得到一些对应角相等。而要证明AD是AE与AC的比例中项,即要证明AD2=AE·AC。要证明等积式,就是要证明比例式AEAD=ADAC。要证明比例式,可以考虑利用平行线分线段成比例定理或利用相似三角形的性质。根据本题的条件,就是要证明这四条线段所在的三角形相似,即△ADE∽△ACD。证明三角形相似需要两个条件,由于∠DAE=∠CAD,因此只需再找一对角相等或夹这个角的两边对应成比例,首先考虑的是证明两个角相等,不行时再考虑证明夹这个角的两边对应成比例,如∠AED=∠ADC。结合条件,可以证出∠BED=∠BDA,所以就可得到∠AED=∠ADC,从而证得结果。

  像这种思考问题的方法,隐含着数学的化归思想。在熟练掌握数学基本概念的前提下,解决较难问题时,我们经常采用把问题逐步转化成我们熟悉的、已经解决的问题,最终解决新的问题。因此我们要经常总结一些常见问题所采用的常见办法,如证明两个角相等,常见的有哪些方法?证明两条边相等,常见的有哪些方法?如何证明直线与圆相切?如何求函数的解析式?二次函数的图象与x轴的交点的横坐标与相应的一元二次方程的根有什么关系?等等。然后再通过适量的练习,达到熟练掌握方法的目的。

  数学思想是数学的精髓,对数学思想方法的考查是中考的一个重要方面。因此在数学学习中要充分注重对数学思想的理解。除了上面提到的化归思想外,初中数学中,我们还学习过字母表示数思想、方程思想、函数思想、分解组合思想、数形结合思想、分类讨论思想、配方法、换元法、待定系数法等等。从数学思想方法上来认识解决问题的方法,那么就更能提高自己的能力。

  最后,学生还要注意改善学习方式,提高学习效率。学生一般都有这样一个习惯,考试结束后,或者作业做完后喜欢交流答案,这表明学生急需想知道自己的劳动成果,这是一件好事,但如果再进一步交流一下解题的方法,学习效率会更高。因为数学题目是大量的,一般学生是做不完的,不少题目有许多不同的解法,比如两位学生的答案一致,但解决问题的方法可能不一样,可能一种是一般的基本的方法,而另一种是根据这个问题的特征采用的特殊的方法,各有千秋,通过交流,取长补短,那么就能共同提高,从而也提高了自己的学习效率。.

TOP

复习数学4要点

    一、夯实基础 查漏补缺  
    中考命题中基础题占90%左右。因此,在复习中要注重对知识点逐一进行认真地梳理,形成清晰的脉络。在这个阶段就需要认真听讲,切忌草草了事。
  例如:用数学语言或式子来表述结果是+1、-1这两个整数____。①倒数等于本身的数;②绝对值相等的两个数之商;③绝对值最小的整数;④最小正整数的平方根;⑤不等式-2;

  二、归纳方法 灵活应用
  复习中,还要加强对重点、难点知识的梳理,强化数学思维能力。
  近年涌现出来的各类贴近生活、生产实际的题型比较新颖,对这类题型的审题要点、解题思路、答题规律,都需要认真分析总结,并努力使其内化为自己的意识和思想,成为解题的自觉行为;注意数学思维方法的归纳。数学中考重视对思维方法的考察,数形结合思想、函数与方程的思想、转化思想、分类讨论思想、统计思想等数学思想和换元法、配方法、消元法、降次法等数学方法,这些思想方法的实质,它所涉及的题型,解题的步骤都要熟练掌握。

  三、提高阅读和表达能力
  情景问题、阅读理解问题和开放题等题型,同学们首先要认真阅读,理解题意;其次要找出题目中的有效信息,理清条件和问题,可通过列举、图表等方法提炼出问题的关键,并与相关的数学知识相联系,将实际问题转化为数学问题;最后要用规范的数学语言进行表述。要达到这样的要求,就要有一定量的训练。

  四、最后阶段的训练
  最后一个阶段,同学们需要进行适应性的训练,所做的训练题要有一定的梯度,但也应避免难度过大的问题,在成功中逐步地树立中考自信心。

[ 本帖最后由 艾丰 于 2012-3-21 21:33 编辑 ].

TOP

数学中考复习的四点建议
考生应充满信心
  纵观近年中考试题,中考的主要职能是了解学生的数学学习历程,评价学生的基本数学水平,其次才是作为高中招生的主要依据。所以,考生不必因为不会解部分数学题而怀疑自己的数学能力,只要在复习阶段奋发努力,一定能在中考中取得理想成绩。
  认真研读《中考考试说明》
  过去曾使许多考生头痛的繁难几何问题,近年来已在中考大幅度地降低了难度。考纲删去了利用切线长定理、弦切角定理、相交弦定理和切割线定理进行有关的证明,只要求考生能利用这些定理进行简单的几何计算。注重考查学生对几何事实的理解和合理的推理能力,明显地降低了几何试题的难度。
  代数方面删除了一元二次方程根与系数的关系等内容。注重考查学生把方程的思想方法融合于勾股定理、相似形、解直角三角形、圆、函数等知识的能力。领会、看清考试范围和命题的趋势,可以避免走弯路、走错路。
  一般来说,可安排三轮复习
  第一轮,开展基础知识系统复习。初中数学脉络是由一个个基本概念和数学的思想方法串起来的,其中每一个数学基本概念又是数学中最基本的思维方式。例如在某校的一次中考模拟中有这样一道选择题:“若a,b互为相反数,则下列各对数中( )不是互为相反数.A.-2a和-2b B.a+1和b+1 C.a+1和b-1 D.2a和2b”。老师惊奇发现,这是10道选择题中失分率第二高的题。分析其原因,是考生对相反数的概念理解还停留在“数字相同,符号相反”的层面上,没有抓住“两数和为零”这一本质。事实上教科书中的例题、练习题、习题为编拟中考数学试题提供了丰富的题源,这些题主要考查考生对基本概念的理解。前面这道题折射出考生在复习过程中对基本概念的漠视。所以建议考生在这一阶段要特别重视对教科书中的基本概念的复习,要注重在对概念的辨析中理解概念。
  第二轮,开展难点知识专项复习。近年来各地中考涌现出大量形式活跃、趣味有益、启迪智慧的好题目,各位考生应在老师的指导下,对这些热点题型认真复习,专项突破。
  注意:你应该有一本各省市中考试题汇编资料,要知道外地考题中出现的精彩题型,往往就是本地命题的借鉴。
  第三轮,进行模拟训练。建议考生在做好学校正常的模拟训练之余,最好使用各地中考试卷,设定标准时间,进行自我模拟测验。注意:自己评分应按参考答案中的评分标准,且不可只看答案,不看给分点。否则养成解题中“跳步”的习惯后导致不必要的丢分是很可惜的。
  培养审题和解后反思的好习惯
  有效地培养数学解题能力,要不打折扣地做好解题的每一个环节:审题,制订解题方案,解答表达,解题后的反思。面对中考,考生被迫跳进题海,期望以多取胜,到头来常常是事倍功半。究其原因,许多在考生的复习过程中为解题而解题,满足解对或证出为止,至于从解题中可获得哪些启示,已经既无时间顾及也无此意识,因而缺乏对自身解题的认知过程进行反思,难以获得已有信息之外的更多有意义信息,降低了解题的收益率。简单地说许多考生在解题的环节中只做了中间的两个环节,对审题和解后反思根本不重视。例如有一中考题:“水果商贩以2元/千克的单价进了100千克橘子,由于运输、储存等原因,损耗了5千克.通过分拣,商贩准备将余下的橘子分成两档出售,较好的售价3.2元/千克,一般的售价2.6元/千克.(1)全部售完后,以进货总量计算,平均每千克获利的范围是多少?(2)若商贩在这笔生意中期望获得总利润不少于80元,则定为较好一档的橘子至少有多少千克?”不少考生到对答案时才发现“以进货总量计算”整一句话没看见,这是平时解题没养成良好的审题习惯所致。
  审题是解题的基础,完全明确问题的文字陈述和符号的含义,准确把握问题的条件和结论,必要时还要适当画出图表,列举、提炼出问题的关键,形成题目脉络,纲举目张。解题中的反思是指学习者对自身解题活动的深层次的反向思考,不仅仅是对数学解题学习的一般性回顾或重复,而是深究数学解题活动中所涉及的知识、方法、思路、策略等,从中达到解决一类问题。所以美籍匈牙利数学家乔治·波利亚说:“数学问题的解决仅仅只是一半,更重要的是解题之后的回顾”。 建议考生在复习过程中准备一本专门的解题反思本,把一些典型的例题尤其是典型的错误摘录下来,并对每一题批注在解题过程中,自己都用了哪些基础知识、基本方法以及数学思想方法,解该题时哪些步骤容易出错,是否还有其他的方法,该问题的难点何在,应该如何突破,问题能否推广,在解题时自己有哪些缺点为解题设置了障碍等。等到临近中考时再把这本子拿出来好好复习,会比看书本或其他资料更有针对性,复习效果自然也会更好。.

TOP

初三数学学习

    对新初三学生来说,学好数学,首先要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。

    其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。

    在新学期要上好每一节课,数学课有知识的发生和形成的概念课,有解题思路探索和规律总结的习题课,有数学思想方法提炼和联系实际的复习课。要上好这些课来学会数学知识,掌握学习数学的方法。

   概念课

    要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。

   习题课

    要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。

   复习课

    在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的措施。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。

    最后,要有意识地培养好自己个人的心理素质,全面系统地进行心理训练,要有决心、信心、恒心,更要有一颗平常心。.

TOP

老师来点给力的吧!.

TOP

为啥叫华育数学吧?.

TOP

初三数学资料

对于初三学生来说,四校自招已接近尾声,重点应转移至准备二模考试和最终的中考,除完成学校规定动作外,可以针对自身问题安排自选动作,务必在最后复习阶段,取得最大学习成效。

今后一段时间内,我会陆续上传一些电子书,供大家参考选择。


初三数学解题技法全类举一反三(1-25).pdf (1.45 MB)
初三数学解题技法全类举一反三(26-50).pdf (1.48 MB)
初三数学解题技法全类举一反三(51-75).pdf (1.42 MB)
初三数学解题技法全类举一反三(75-95).pdf (1.11 MB)
初三数学解题技法全类举一反三(95-).pdf (402.04 KB)
初三数学解题技法全类举一反三(KEY).pdf (1.21 MB)

[ 本帖最后由 艾丰 于 2012-3-27 14:01 编辑 ].

TOP

下好了,谢谢老师!.

TOP

回复 7楼GerryBB 的帖子

这位家长比较猴急,看来问题蛮多哈,先提供一套资料供参考


中考数学总复习
中考数学总复习题.pdf (797.83 KB)

[ 本帖最后由 艾丰 于 2012-3-27 13:35 编辑 ].

TOP

,老师你的眼光不是一埃埃的准啊!所以我急啊!.

TOP

非常好!太给力了!期待继续!.

TOP

初三选择、填空、简答题     
易错题集锦


初中数学选择、填空、简答题__.pdf (165.69 KB)
初中数学选择、填空、简答题( KEY).pdf (183.97 KB)

[ 本帖最后由 艾丰 于 2012-3-28 12:55 编辑 ].

TOP

添加辅助线是中学生必备的数学技能,学会使用辅助线是帮助解题的利器!
同学们,几何题往往是整张卷子中的难题所在,平时要多做多练!



如何作辅助线.pdf (240.62 KB) .

TOP

今天同学们去春游啦,春暖花开的时候是该多接触大自然,感悟大自然的美,体验春的妩媚,但初三的同学别忘了,要二模考试了。

顺便,我提供42套初三数学口算题,多多练习,相互批改啊!



复习作业纸.pdf (1.48 MB) .

TOP

初中数学课外读物---------数学史上的三次危机

数学的发展史中,并不是那么一帆风顺的,其中历史上曾发生过三大危机,危机的发生促使了数学本生的发展,因此我们应该辨证地看待这三大危机。

    第一次数学危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。
    最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。
    我们认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的 , 都无法用 来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。

    第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢?
    直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了 极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。
    而我们自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说 ,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到 等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。

    第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。
我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那么理发师该不该给自己理发呢?还有大家熟悉的“说谎者悖论”,其大体内容是:一个克里特人说:“所有克里特人说的每一句话都是谎话。”试问这句话是真还是假?从数学上来说,这就是罗素悖论的一个具体例子。
    罗素在该悖论中所定义的集合R,被几乎所有集合论研究者都认为是在朴素集合论中可以合法存在的集合。事实虽是这样但原因却又是什么呢?这是由于R是集合,若R含有自身作为元素,就有R R,那么从集合的角度就有R R。一个集合真包含它自己,这样的集合显然是不存在的。因为既要R有异于R的元素,又要R与R是相同的,这显然是不可能的。因此,任何集合都必须遵循R R的基本原则, 否则就是不合法的集合。这样看来,罗素悖论中所定义的一切R R的集合,就应该是一切合法集合的集合,也就是所有集合的集合,这就是同类事物包含所有的同类事物,必会引出最大的这类事物。归根结底,R也就是包含一切集合的“最大的集合”了。因此可以明确了,实质上,罗素悖论就是一个以否定形式陈述的最大集合悖论。
    从此,数学家们就开始为这场危机寻找解决的办法,其中之一是把集合论建立在一组公理之上,以回避悖论。首先进行这个工作的是德国数学家策梅罗,他提出七条公理,建立了一种不会产生悖论的集合论,又经过德国的另一位数学家弗芝克尔的改进,形成了一个无矛盾的集合论公理系统(即所谓ZF公理系统),这场数学危机到此缓和下来。

    现在,我们通过离散数学的学习,知道集合论主要分为Cantor集合论和Axiomatic集合论,集合是先定义了全集I,空集 ,在经过一系列一元和二元运算而得来得。而在七条公理上建立起来的集合论系统避开了罗素悖论,使现代数学得以发展。

[ 本帖最后由 艾丰 于 2012-3-28 16:57 编辑 ].

TOP

回复 16楼艾丰 的帖子

太棒了,如果有答案就更好了。.

TOP

初中数学课外读物---------数学史上的著名中外人物

1.刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。

《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3.14的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。

《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。

刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。

刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

[ 本帖最后由 艾丰 于 2012-3-29 12:25 编辑 ].

TOP

2. 祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。祖冲之在数学上的杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间。并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元。

祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算。他们当时采用的一条原理是:"幂势既同,则积不容异。"意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等。这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的。为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理"。

[ 本帖最后由 艾丰 于 2012-3-29 12:27 编辑 ].

TOP

3.欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰•伯努利(Johann Bernoulli,1667-1748年)的精心指导。

欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文。到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身"。

欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。

欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗。他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文。19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法。"

欧拉的父亲保罗•欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学。由于小欧拉的才人和异常勤奋的精神,又受到约翰•伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了。

1725年约翰•伯努利的儿子丹尼尔•伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡。1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授。1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了。然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明。不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。

沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A•欧拉(数学家和物理学家)笔录。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。

欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来。欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题。

欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生。等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉。他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师。" 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算"。

欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的。〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等。

[ 本帖最后由 艾丰 于 2012-3-29 12:29 编辑 ].

TOP

4. 笛卡儿 (Descartes R.,1596.3.31~1650.2.11)。我们现在所用的直角坐标系,通常叫做笛卡儿直角坐标系。是他从引进了直角坐标系以后,人们才得以用代数的方法研究几何问题,才建立并完善了解析几何学,才建立了微积分。

法国数学家拉格朗日(Lagrange J.L.,1736.1.25~1813.4.10)曾经说过:"只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄。但是,当这两门科学结合成伴侣时,它们就互相吸取新鲜的活力。从那以后,就以快速的步伐走向完善。"

我国数学家华罗庚(1910.11.12~1985.6.12)说过:"数与形,本是相倚依,焉能分作两边飞。数缺形时少直觉,形少数时难入微。形数结合百般好,隔裂分家万事非。切莫忘,几何代数统一体,永远联系,切莫分离!"

这些伟人的话,实际上都是对笛卡儿的贡献的评价。

笛卡儿的坐标系不同于一个一般的定理,也不同于一段一般的数学理论,它是一种思想方法和技艺,它使整个数学发生了崭新的变化,它使笛卡儿成为了当之无愧的现代数学的创始人之一。

笛卡儿是十七世纪法国杰出的哲学家,是近代生物学的奠基人,是当时第一流的物理学家,并不是专业的数学家。

笛卡儿的父亲是一位律师。当他八岁的时候,他父亲把他送入了一所教会学校,他十六岁离开该校,后进入普瓦界大学学习,二十岁毕业后去巴黎当律师。他于1617年进入军队。在军队服役的九年中,他一直利用业余时间研究数学。后来他回到巴黎,为望远镜的威力所激动,闭门钻研光学仪器的理论与构造,同时研究哲学问题。他于1682年移居荷兰,得到较为安静自由的学术环境,在那里住了二十年,完成了他的许多重要著作,如《思想的指导法则》、《世界体系》、《更好地指导推理和寻求科学真理的方法论》(包括三个著名的附录:《几何》、《折光》和《陨星》),还有《哲学原理》和《音乐概要》等。其中《几何》这一附录,是笛卡儿写过的唯一本数学书,其中清楚地反映了他关于坐标几何和代数的思想。笛卡儿于1649年被邀请去瑞典作女皇的教师。斯德哥尔摩的严冬对笛卡儿虚弱的身体产生了极坏的影响,笛卡儿于1650年2月患了肺炎,得病十天便与世长辞了。他逝世于1650年2月11日,差一个月零三周没活到54岁。

笛卡儿虽然从小就喜欢数学,但他真正自信自己有数学才能并开始认真用心研究数学却是因为一次偶然的机缘。

那是1618年11月,笛卡儿在军队服役,驻扎在荷兰的一个小小的城填布莱达。一天,他在街上散步,看见一群人聚集在一张贴布告的招贴牌附近,情绪兴奋地议论纷纷。他好奇地走到跟前。但由于他听不懂荷兰话,也看不懂布告上的荷兰字,他就用法语向旁边的人打听。有一位能听懂法语的过路人不以为然的看了看这个年青的士兵,告诉他,这里贴的是一张解数学题的有奖竞赛。要想让他给翻译一下布告上所有的内容,需要有一个条件,就是士兵要给他送来这张布告上所有问题的答案。这位荷兰人自称,他是物理学、医学和数学教师别克曼。出乎意料的是,第二天,笛卡儿真地带着全部问题的答案见他来了;尤其是使别克曼吃惊地是,这位青年的法国士兵的全部答案竟然一点儿差错都没有。于是,二人成了好朋友,笛卡儿成了别克曼家的常客。

笛卡儿在别克曼指导下开始认真研究数学,别克曼还教笛卡儿学习荷兰语。这种情况一直延续了两年多,为笛卡儿以后创立解析几何打下了良好的基础。而且,据说别克曼教笛卡儿学会的荷兰话还救过笛卡儿一命:

有一次笛卡儿和他的仆人一起乘一艘不大的商船驶往法国,船费不很贵。没想到这是一艘海盗船,船长和他的副手以为笛卡儿主仆二人是法国人,不懂荷兰语,就用荷兰语商量杀害他们俩抢掠他们钱财的事。笛卡儿听懂了船长和他副手的话,悄悄做准备,终于制服了船长,才安全回到了法国。

在法国生活了若干年之后,他为了把自己对事物的见解用书面形式陈述出来,他又离开了带有宗教偏见和世俗的专制政体的法国,回到了可爱而好客的荷兰,甚至于和海盗的冲突也抹然不了他对荷兰的美好回忆。正是在荷兰,笛卡儿完成了他的《几何》。此著作不长,但堪称几何著作中的珍宝。

笛卡儿在斯德哥尔摩逝世十六年后,他的骨灰被转送回巴黎。开始时安放在巴维尔教堂,1667年被移放到法国伟人们的墓地--神圣的巴黎的保卫者们和名人的公墓。法国许多杰出的学者都在那里找到了自己最后的归宿。

[ 本帖最后由 艾丰 于 2012-3-29 12:31 编辑 ].

TOP

5.高斯(C.F.Gauss,1777.4.30~1855.2.23)是德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德•迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过份,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。

在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。

在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。

罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。

7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。

在全世界广为流传的一则故事说,高斯10岁时算出布特纳给学生们出的将1到100的所有整数加起来的算术题,布特纳刚叙述完题目,高斯就算出了正确答案。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E•T•贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。

当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E•T•贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。

高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。

1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。

布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。

1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。

1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。”

慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。

为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。

高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。

高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。

虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。

1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。

高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。

[ 本帖最后由 艾丰 于 2012-3-29 12:32 编辑 ].

TOP

6.毕达哥拉斯(Pythagoras,572BC?~497BC?),古希腊数学家、哲学家。


毕达哥拉斯和他的学派在数学上有很多创造,尤其对整数的变化规律感兴趣。例如,把(除其本身以外)全部因数之和等于本身的数称为完全数(如6,28,496等),而将本身大于其因数之和的数称为盈数;将小于其因数之和的数称为亏数。他们还发现了“直角三角形两直角边平方和等于斜边平方”,西方人称之为毕达哥拉斯定理,我国称为勾股定理。


在几何学方面,毕达哥拉斯学派证明了“三角形内角之和等于两个直角”的论断;研究了黄金分割;发现了正五角形和相似多边形的作法;还证明了正多面体只有五种——正四面体、正六面体、正八面体、正十二面体和正二十面体。

[ 本帖最后由 艾丰 于 2012-3-29 12:33 编辑 ].

TOP

争取成为优等生,初三同学加油!

优等生训练卷001.pdf (70.2 KB)

[ 本帖最后由 艾丰 于 2012-3-29 12:39 编辑 ].

TOP

优等生训练卷002.pdf (69.12 KB)

[ 本帖最后由 艾丰 于 2012-3-29 12:39 编辑 ].

TOP

优等生训练卷003.pdf (69.1 KB)

[ 本帖最后由 艾丰 于 2012-3-29 12:40 编辑 ].

TOP

优等生训练卷004.pdf (60.81 KB)

[ 本帖最后由 艾丰 于 2012-3-29 12:40 编辑 ].

TOP

优等生训练卷005.pdf (63.35 KB)

[ 本帖最后由 艾丰 于 2012-3-29 12:41 编辑 ].

TOP

优等生训练卷006.pdf (63.93 KB)

[ 本帖最后由 艾丰 于 2012-3-29 12:41 编辑 ].

TOP

优等生训练卷007.pdf (61.23 KB)

[ 本帖最后由 艾丰 于 2012-3-29 12:42 编辑 ].

TOP

优等生训练卷008.pdf (68.28 KB)

[ 本帖最后由 艾丰 于 2012-3-29 12:42 编辑 ].

TOP

优等生训练卷009.pdf (68.35 KB)

[ 本帖最后由 艾丰 于 2012-3-29 12:43 编辑 ].

TOP

优等生训练卷010.pdf (68.01 KB)

[ 本帖最后由 艾丰 于 2012-3-29 12:43 编辑 ].

TOP

和预初学生谈谈怎样学好初中数学

和小学数学相比,初中数学的内容多,抽象性、理论性强,因为不少同学进入初中之后很不适应,进校后,代数里首先遇到的是负数,这使一些习惯于自然数运算的学生感到无所适从,产生恐惧心理,就使一些小学数学学得还不错的同学不能很快地适应而感到困难,以下就怎样学好初中数学谈几点意见和建议。   
一、首先要改变观念。  
    小学阶段,特别是小学五年级,通过大量的练习,可使你的成绩有明显的提高,这是因为小学数学知识相对比较浅显,更易于掌握,通过反复练习,提高了熟练程度,即可提高成绩,既使是这样,对有些问题理解得不够深刻甚至是不理解的。  
    初中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。
  
二、提高听课的效率是关键。  
    学生在校期间,在课堂的时间占了大部分。因此听课的效率如何,决定着学习的成绩的好坏,提高听课效率应注意以下几个方面:  
1、课前预习能提高听课的针对性。  
    预习中发现的难点,就是听课的重点;对预习中遇到的不理解的新知识,可进行有针对性的听讲;预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。  
2、合理安排听课过程。  
   首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、练习本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、打牌、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。  
   其次就是听课要全神贯注。全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。  
3、特别注意老师讲课的开头和结尾。  
   老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。  
4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,换元法,判别式法等操作性较强的数学方法。同学们在学习时应对每一种方法的实质,它所适应的题型,包括解题步骤应熟练掌握。其次应重视对数学思想的理解及运用,如函数思想,在初中的试题中,明确告诉了自变量与函数,要求写成函数解析式,或者隐含用函数解析式去求交点等问题,同学们应加深对这一思想的深刻理解,多做一些相关内容的题目;如方程思想。它是已知量与未知量之间的联系和制约,把未知量转化为已知量的思想。应牢固树立建立方程的思想,比如要求两个量必须根据已知条件建立关于这两个量的方程(或等式);再如数形结合的思想,各省市近几年中考“压轴题”都与此有关,如把图式三角形放到直角坐标系中利用它们图形上的相互关系,熟练进行代数知识与几何知识的相互转换。许多同学解这类问题时往往要么只注意到代数知识,要么只注意到几何知识,不会把它们相互转化,如坐标系中点的坐标与几何图形中线段的长的关系;坐标系中x轴与y 轴相互垂直与几何图形中的直角、垂直、对称及切线等的关系;函数解析式与图形的交点之间的关系等,建议同学们着重分析几个题目熛ば奶寤嵘鲜龅娜种关系在题目中如何出现,如何转换。 此外还要特别注意老师讲课中的提示。 
老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。最后一点就是作好笔记,笔记不是泛泛记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。 
 
三、做好复习和总结工作。  
1、做好及时的复习。  
   课完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题,分析问题的思路、方法等,尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。  
2、做好单元复习。  
   学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。  
3、做好单元小结。  
单元小结内容应包括以下部分。  
(1)本单元(章)的知识网络;  
(2)本章的基本思想与方法(应以典型例题形式将其表达出来);  
(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。  

四、做一定数量的题,做一定质量的题.  
    有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为:重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。当然没有一定量(老师布置的作业量)的练习就不能形成技能,也是不行的。  
    另外,就是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,然后去追求速度或技巧,也是学好数学的重要问题。  
    最后想说的是:“兴趣”和信心是学好数学的最好的老师.有了一定的兴趣,随之信心就会增强,也就不会因为某次考试的成绩不理想而泄气,在不断总结经验和教训的过程中,你的信心就会不断地增强,成绩就会不断提高.

[ 本帖最后由 艾丰 于 2012-3-29 16:03 编辑 ].

TOP

回复 25楼艾丰 的帖子

期待答案,谢谢!.

TOP

回复 36楼wikky 的帖子

之所以不提供答案,是因为不希望同学对每题都去做一遍,那不是学习数学的方法。希望同学们能看一眼这些题目,这些题型是否熟悉,是否立即有解题思路,即可。如果确有没把握的题目再动手一试,初三的同学需要学会“偷懒”,提高学习效率。

这是浙江省某初三的练习题,仅供学习借鉴。还有50套,就不一一上传了。.

TOP

老师辛苦,我们差生一定努力啊!.

TOP

先谢谢老师,再慢慢看哈。.

TOP

回复 38楼GerryBB 的帖子

家长莫焦虑,控制好情绪,千万别传染给你的孩子,多努力!.

TOP

回复 39楼渔鱼_20181000 的帖子

谢谢支持!.

TOP

大家给力啊!

[ 本帖最后由 艾丰 于 2012-3-29 17:25 编辑 ].

TOP

名校好题!- 代数分册

名校好题!-代数分册


名校好题初中数学分册-代数1.pdf (1.11 MB)
名校好题初中数学分册-代数2.pdf (1.3 MB)

[ 本帖最后由 艾丰 于 2012-3-29 17:12 编辑 ].

TOP

名校好题!- 几何分册

名校好题!- 几何分册


名校好题初中数学分册-几何1.pdf (1.42 MB)
名校好题初中数学分册-几何2.pdf (708.25 KB)

[ 本帖最后由 艾丰 于 2012-3-29 17:14 编辑 ].

TOP

太厉害了.

TOP

下了好多 谢谢了.

TOP

老师生病了,怎么了嘛?两天没露面了。。。。。好想你哦.

TOP

华育数学吧-------学习与交流

下了,老师太给力了!.

TOP

回复 40楼艾丰 的帖子

老师,莫理他,他家孩子数学好的来要西,这个就给我家差生吧,最好要有答案,没有答案做了也不知对否,谢谢.

TOP

老师,再提个建议,最好是压缩文件上传,pdf我不能修改 ,谢谢.

TOP

 249 12345
发新话题